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A B S T R A C T

Incomplete multivariate time series (MTS) clustering is a prevalent research topic in time series analysis,
aimed at partitioning MTS containing missing data into distinct clusters. Contrastive learning-based multi-view
clustering methods are a promising approach to address this issue. However, existing methods are typically
not designed for time series. Specifically, most of these methods struggle to capture the inherent properties
of time series, and are susceptible to losing their interdimensional correlations, thereby compromising data
integrity. Furthermore, they commonly utilize data augmentation techniques to generate sample pairs for
contrastive learning. These existing data augmentation techniques are not suitable for time series, and introduce
uncertainty factors, which can diminish the representation learning capacity of contrastive learning. To
address the challenges, we propose a contrastive learning-based multi-view clustering method for incomplete
multivariate time series (MVCIMTS). In this method, each variable within the MTS is treated as a separate
view, enabling a multi-view learning approach. To better leverage the intrinsic information of time series, we
utilize a GRU-based model architecture that integrates imputation and clustering within a unified deep learning
framework. In this way, missing views can be effectively inferred, and representations suitable for clustering
can be learned, thereby enhancing the clustering performance for incomplete time series. Furthermore, we
introduce an innovative contrastive learning approach specifically tailored for MTS, which ensures that the
exploration of common semantics and clustering consistency across views remains unaffected by uncertainty
factors. It assumes that each time series variable within the same sample has similar representations, thereby
taking into account the correlation between variables and enhancing the quality of the representations. To
the best of our knowledge, this is the first attempt at applying contrastive learning-based multi-view deep
clustering to incomplete MTS. We conduct extensive comparative experiments with five multi-view clustering
methods and two time series clustering methods on seven benchmark datasets. The results demonstrate that
our proposed method is superior to other state-of-the-art methods.
. Introduction

Multivariate time series (MTS) data has gained increased attention
ue to sensing technology advancement in real-world applications such
s finance [1], biomedicine [2], and climate [3]. Despite the wealth
f information contained in time series data, analyzing it remains
hallenging due to its temporal dependence and interdimensional cor-
elations. Furthermore, in practice, due to the complexity of data
ollection and transmission, some data points in time series may be
bsent, resulting in incomplete time series [4,5]. Incomplete MTS clus-
ering [6], as an unsupervised time series analysis technique, has
arnered significant attention, resulting in the development of various
ethods, including those based on information fusion [7], represen-

ation learning [8], and unsupervised learning [9]. However, these
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single-view methods either suffer from high computational costs or
ignore the rich information contained in MTS data. Multi-view methods
have demonstrated superiority over single-view methods in many appli-
cation areas by integrating complementary and consensus information
across different views [10–15]. Consequently, incomplete multi-view
clustering (IMVC) techniques emerge as a promising solution to the
above problem [16–20].

Existing IMVC methods can be divided into two categories: tradi-
tional [21–26] and deep learning-based methods [27–30]. The majority
of current IMVC approaches fall into the traditional category, which
generally exhibit limited representation learning capabilities [31–36].
Recently, deep IMVC methods have gained attention due to their pow-
erful representation learning capabilities and scalability [33,37,38].
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 data mining, AI training, and similar technologies. 
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To further improve the representation learning capability, some deep
IMVC methods based on contrastive learning have been proposed [39,
40]. However, these methods are not applicable to time series and have
the following drawbacks:

(1) Most existing incomplete multi-view clustering methods first
learn a suitable representation for the imputation task, followed by
applying a clustering algorithm, such as k-means, to group the learned
representations [41]. This strategy treats imputation (or representa-
tion learning) and clustering as two completely separate processes.

herefore, these methods are deficient in controlling the feedback of
lustering performance into the imputation phase, and in ensuring that
he optimized representation is more conducive to clustering.

(2) Existing contrastive learning approaches treat a sample and
ts augmented counterpart as positive pairs, while designating other

samples as negative pairs [42,43]. For instance, in the image domain,
ata augmentation techniques such as rotation, cropping, and adding
oise are commonly utilized to generate sample pairs [44,45]. How-

ever, given the unique characteristics of time series, these augmentation
techniques are not applicable to time series. Furthermore, the de-
sign strategies for positive and negative sample pairs based on data
augmentation techniques often introduce significant subjectivity and
ncertainty, ultimately impacting the data representation capabilities
f contrastive learning.

To solve the aforementioned problems, we propose a contrastive
learning-based multi-view clustering method for incomplete multivari-
ate time series. Our method integrates missing views recovery and
clustering into an end-to-end framework, by jointly optimizing multiple
objectives. It facilitates the mutual optimization and enhancement
between representation learning and clustering within a unified frame-
work. Firstly, it utilizes a multi-level learning framework to extract
features at various levels including low-level, high-level, and semantic
features. Specifically, it extracts low-level features using the encoder,
and further extracts high-level and semantic features from the low-level
features by stacking multilayer perceptrons. Then it performs distinct
objectives in different feature spaces in a fusion-free manner, thereby
eliminating potential conflicts that may arise between these objectives.
Specifically, it recovers missing views and preserves the structural
information of the original data through the prediction objective and
reconstruction objective on low-level features, respectively. Consider-
ing the characteristics of MTS, our method learns common semantics
by implementing contrastive learning from a multi-view perspective on
high-level features. This approach can fully utilize the information in
the raw data and reduce uncertainty. Additionally, our method utilizes
cluster information within the high-level features to refine semantic
labels, thereby enhancing clustering accuracy. Compared to previous
work, the main contributions of this paper are summarized as follows:

• We propose a contrastive learning-based multi-view clustering
method for incomplete multivariate time series. It integrates data
recovery and clustering within a unified framework, enabling
joint training and optimization by integrating multi-view and
contrastive learning techniques.

• We design a flexible multi-view learning framework that resolves
conflicts among certain objectives, thereby effectively mitigating
the loss of interdimensional correlations within multivariate time
series. It learns different level features and conducts different
objectives in different feature spaces in a fusion-free manner,
thus avoiding conflicts between objectives and enabling them to
reinforce each other.

• We design a consistent representation learning module for multi-
variate time series based on contrastive learning. It directly lever-
ages the information from the original data to discover the com-
mon semantics across views by employing contrastive learning
from a multi-view perspective, thereby avoiding the introduction
of uncertainty.
2 
The remainder of this paper is structured as follows: Section 2
provides an overview of contrastive learning and multi-view clustering,
as well as related work. In Section 3, we present our proposed method
in detail. In Section 4, relevant experiments are conducted to evaluate
our method, and the results are analyzed. Finally, Section 5 concludes
he paper and outlines future work.

2. Related work

In this section, we briefly review two topics related to this work,
i.e., contrastive learning and multi-view clustering.

2.1. Contrastive learning

As one of the most effective unsupervised learning methods, con-
trastive learning has gained significant attention in representation
earning [46–48]. The basic idea of contrastive learning is to seek

a latent feature space where the similarity between positive pairs is
maximized and the similarity between negative pairs is minimized [49].
The encoder is trained to learn the features of data by maximizing
the consistency between positive pairs and minimizing the consistency
between negative pairs. Recently, several studies have investigated
multi-view learning methods based on contrastive learning. For exam-
ple, Tian et al. [50] propose a multi-view encoding framework based
on contrastive learning to capture the underlying scene semantics.
In [51], the authors develop a multi-view representation learning
approach to solve the graph classification problem through contrastive
earning. In addition, some studies have explored contrastive learning
or multi-view clustering [52,53]. Jin et al. [54] propose CPSPAN,

which adopts pair-observed data alignment to guide the construction
of instance-to-instance correspondence across views. Furthermore, it
mines consistent cross-view structural information by maximizing the
matching alignment between paired-observed data. Lin et al. [52] pro-
pose CCR-Net, which explores the complementarity between views by a
designed fusion module based on contrastive learning to learn a shared
fusion weight [55,56]. Additionally, it incorporates a consistency rep-
resentation module to ensure consistency. Wang et al. [57] propose
 graph contrastive learning framework to solve incomplete multi-

view clustering problems. It mainly consists of two parts: within-view
contrastive learning and cross-view consistency learning, to maximize
the mutual information of different views in a cluster.

As mentioned above, most contrastive learning studies employ data
augmentation techniques to generate different views for constructing
positive and negative sample pairs, and then learn consistency from
these views [58–60]. This traditional approach assumes that different
augmented views within the same instance have similar representa-
tions, which introduces a higher degree of uncertainty when applied
to time-series data. Different from these existing contrastive learning
approaches, our method directly learns consistency from a given mul-
tivariate time series dataset. Specifically, our method assumes that MTS
originating from the same sample or within the same cluster ought to
exhibit similar representations. By considering both instance-level and
cluster-level losses, this strategy enhances the exploitation of inter-view
informational complementarity in time series multi-view learning tasks.

2.2. Multi-view clustering

Traditional IMVC methods typically employ classical machine learn-
ing techniques for representation learning, which can be classified
nto four major categories: non-negative matrix factorization, kernel

techniques, graph learning, and tensor-based. Subsequently, we will
briefly discuss the tensor-based and graph learning approaches that are
relevant to the baseline algorithm in the later experimental section. The
tensor-based IMVC method, TCIMC [19], captures complementary in-
formation and spatial structure through a tensor Schatten p-norm-based
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completion technique. The graph-based IMVC leverages graph struc-
ure information to improve cluster pattern recognition. For instance,
IMVC [23] establishes a graph-regularized projective consensus rep-

resentation learning model, which learns the consensus representation
n a unified low-dimensional subspace.

With the development of deep learning, neural networks’ remark-
ble representation learning capabilities have enabled the extensive ap-
lication of deep models to incomplete multi-view clustering tasks [57,

61–63]. Based on the manner of processing information, the exist-
ng deep incomplete multi-view clustering (DIMVC) methods can be
ategorized into the following four categories: (1) Autoencoder-based
ethods. By extracting features from the data, deep autoencoders can

earn consistent representations to impute missing data and achieve
uperior clustering performance [64]. Typical methods are [37,65].

Xu et al. [37] propose APADC, which applies adaptive feature pro-
ection to map all available data into a common space for feature
earning, while considering distribution alignment during this process.

The ultimate cluster information is obtained by maximizing mutual in-
formation between different views. Xu et al. [65] also propose DIMVC,

hich performs embedded feature learning on the complete data for
ach view and employs an EM-like optimization strategy to alternately
acilitate feature learning and clustering. (2) GANs-based methods.
hese approaches directly generate imputation values for missing data
sing generative adversarial networks (GANs) by exploring mutual
epresentations between views [66]. (3) Contrastive-based methods.
 representative work is [67], which explores consistent represen-

ations by comparing multiple views and subsequently utilizes these
epresentations to impute missing data. (4) GCN-based methods. It is
 method that employs graph embedding techniques to learn node
epresentations from multi-view data. For instance, ICMVC proposed
y Chao et al. [68] utilizes GCN to handle missing values in multi-view
ata, and Xia et al. [69] propose SGCMC, which employs a multi-view

shared graph attention encoder to learn graph embedding.
The differences between our method and existing work are as

ollows. First, almost all existing IMVC approaches [16] treat rep-
resentation learning and clustering as two separate problems. These
methods learn a suitable representation during the imputation phase,
subsequently applying a clustering algorithm to group the enhanced
representations. In contrast, our approach unifies imputation and clus-
tering into a unified framework and allows them to reinforce each
other. The imputation phase yields representations that facilitate ef-
fective clustering, while the clustering results inform the imputation to
enhance accuracy in inferring missing data and to learn cluster-friendly
epresentations. Second, existing IMVC methods are predominantly
ocused on the image domain, and there are no dedicated approaches
esigned specifically for time-series. We propose a multi-view feature
earning framework, MVCIMTS, which is specifically designed for time
eries. It integrates an innovative contrastive learning approach from a
ulti-view perspective, aiming to learn consistent common semantics

nd reconstruct view-specific information. Consequently, it effectively
arnesses the interdependencies among time-series variables, aiming to
xploit the complementarity and consistency between different views
uring the multi-view learning process.

MFLVC [70] and COMPLETER [41] are two multi-view clustering
methods closely related to the proposed MVCIMTS. MVCIMTS differen-
tiates itself from these methods in several aspects: model architecture,
learning strategy, and domain applicability. Regarding model archi-
tecture, MFLVC and COMPLETER utilize linear layers. In contrast,
MVCIMTS is tailored for time series, with its core model structure
based on the GRU, a type of recurrent neural network. When deal-
ing with temporal sequences, MVCIMTS’ GRU structure is particularly
effective at capturing dynamic changes and temporal dependencies
within the data. With respect to the learning strategy, COMPLETER
is designed to learn suitable representations during the imputation
process. The learned representations are applied to the subsequent
3 
k-means algorithm for clustering. It is fundamentally a form of repre-
sentation learning for multiple views. Unlike COMPLETER, our model
combines missing view recovery and clustering within a unified frame-
work through integrating multiple objective functions, enabling them
o mutually enhance and optimize each other. Its goal is to gener-

ate clustering-friendly representations, using feedback from clustering
outcomes to enhance imputation accuracy and to further improve
representation quality. Furthermore, MVCIMTS integrates multi-view
learning with contrastive learning and exploits the inter-variable cor-
relations inherent in time series to more effectively enhance represen-
tation learning capability. In multi-view learning, this strategy aims to
utilize complementarity and consistency between different views [71].
In terms of domain applicability, MVCIMTS is specifically designed
for handling time series with missing values, whereas MFLVC and
COMPLETER are not focused on this issue.

3. Method

In this section, we first delve into the motivation behind the method
roposed in this paper. Then, we provide brief definitions of the terms,
nd Table 1 summarizes the key notations used in this paper. Immedi-
tely following this, we provide an overview of the overall framework
tructure of MVCIMTS. Finally, we elaborate on each component of the
roposed MVCIMTS in detail.

3.1. Motivation

In this section, we endeavor to construct a multi-view clustering
framework for incomplete multivariate time series based on GRU.

ulti-view clustering methods are quite common in the fields of image
rocessing, such as [22,23,64]. In recent years, multi-view clustering

methods based on contrastive learning have emerged as a new research
focus. These methods typically construct positive and negative sam-
ple pairs by data augmentation techniques, then employ multi-view
methods to learn multiple representations, followed by representation
fusion, and finally apply a simple clustering algorithm to group the
data. However, these methods fail to account for learning a latent
space that is suitable for clustering while simultaneously inferring
missing views effectively. Moreover, the uncertainty introduced by data
augmentation methods in contrastive learning can lead to instability
of the model’s clustering performance. Due to the uniqueness of time
series, there are few incomplete multi-view clustering methods in the
time series domain. Therefore, the key issues lie in: (1) How to balance
the relationship between imputation and clustering, and construct a
framework that jointly performs time series imputation and clustering.
(2) How to construct multi-view data for time series and mitigate the
introduction of uncertainty in contrastive learning for time series.

Our goal is to perform clustering on incomplete time series using
 multi-view approach, enhancing the model’s clustering capabilities
hile maintaining its stability across varying degrees of missing data.
o this end, we propose MVCIMTS, which employs GRU as its primary
rchitecture, applies the concept of multi-view and contrastive learning
o multivariate time series. It adopts a one-stage training strategy to
imultaneously implement time series imputation and clustering. These
nhancements boost the method’s clustering performance and expand
ts scope of application scenarios.

3.2. Overview of model

Notations: Formally, we define a MTS dataset 𝑿 = {𝑿1,𝑿2,… ,
𝑿𝑁} with 𝑁 samples. Each 𝑿𝑖 ∈ R𝐷×𝑇 is the 𝑖th sample and 𝒙𝑗𝑖 is the
th time series variable of 𝑿𝑖, where 𝐷 is the number of variables, and

represents the time series length. 𝑿𝑗 ∈ R𝑁×𝑇 is the 𝑗th variable of
ample. The dataset is divided into 𝐾 clusters. Table 1 details important

symbols.
Framework architecture: The structure of the proposed MVCIMTS

is composed of two parts: imputation and clustering. As depicted in
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Table 1
List of key notations used in this paper.

Notations Descriptions

𝑿 MTS dataset
𝑿𝑖 The 𝑖th time series sample
𝑿𝑗 The 𝑗th time series variable
𝑁 Number of samples
𝐷 Number of variables
𝑇 Length of time series
𝐾 Number of clusters
𝑑 , 𝑑′ Dimension of low-level and high-level features
𝒁 The low-level features
𝑯 The high-level features
𝑸 The semantic features
𝑓 (𝑗)(⋅), 𝜃(𝑗) Encoder of the 𝑗th view, the 𝑗th encoder parameter
𝑔(𝑗)(⋅), 𝜙(𝑗) Decoder of the 𝑗th view, the 𝑗th decoder parameter
𝑾 𝐻 ,𝑾 𝑄 Weight parameters
𝜏𝐹 , 𝜏𝐿 Tuning factors
𝜆0 , 𝜆1 , 𝜆2 Weight coefficients

Fig. 1, the upper part is responsible for inferring missing data, while
he lower part implements the multi-view clustering algorithm. Overall,
he model learns three levels of features for each view: low-level
eatures 𝒁𝑗 , high-level features 𝑯 𝑗 , and semantic features 𝑸𝑗 . It then

implements different objectives for each feature type and finally unites
hese multiple learning objectives to achieve data recoverability and
lustering. Specifically, in the imputation part, the missing views are
ecovered by a dual prediction mechanism operating. Meanwhile, view
econstruction is performed on low-level features to learn view-specific
epresentations that maintain the original structural information of
he data. In the clustering part, multi-view and contrastive learning is
ombined to learn cross-view common semantics on high-level features
nd cluster consistency across all views on semantic features. The
mputation and clustering parts mutually reinforce each other. The
earned representations in the imputation part should identify clusters
ell, and the clustering part feeds the clustering results back to the

mputation part so that it can infer the missing data more accurately
nd learn cluster-friendly representations.

3.3. Objective functions

Cross-view dual prediction objective: To infer the missing views,
the model utilizes a dual prediction mechanism as shown in Fig. 2.
To better illustrate the mechanism principle, we take the example of
bi-view data. Specifically, in a latent space parameterized by a neural
network, the representation of one view is predicted from another by
minimizing the conditional entropy 𝐻(𝒁̃𝑗

|𝒁̃𝑗′ ), where 𝑗 = 1, 𝑗′ = 2 or
𝑗 = 2, 𝑗′ = 1. 𝒁̃𝑗 and 𝒁̃𝑗′ are the feature representations with missing
values for 𝑿𝑗 and 𝑿𝑗′ , respectively. The theoretical explanation of the
dual prediction mechanism is shown in Fig. 3.

In Fig. 3, the solid and dashed rectangles represent the information
contained in view 𝑿𝑗 and view 𝑿𝑗′ , respectively. Mathematically, the
mutual information 𝐼(𝒁̃𝑗 , 𝒁̃𝑗′ ), denoted as the gray area, quantifies
the shared information between 𝒁̃𝑗 and 𝒁̃𝑗′ , where 𝒁̃𝑗 and 𝒁̃𝑗′ are
the representations of 𝑿𝑗 and 𝑿𝑗′ , respectively. We learn consistent
representations by maximizing 𝐼(𝒁̃𝑗 , 𝒁̃𝑗′ ). Furthermore, to promote
missing views recovery, the conditional entropy 𝐻(𝒁̃𝑗

|𝒁̃𝑗′ ) (the blue
area) is minimized, where 𝑗 = 1, 𝑗′ = 2 or 𝑗 = 2, 𝑗′ = 1. Cross-view
consistency learning and missing view recovery exhibit a reciprocal
reinforcing relationship. In more detail, on the one hand, maximizing
the mutual information 𝐼(𝒁̃𝑗 , 𝒁̃𝑗′ ) increases the shared information
between the two views, which in turn makes it easier to recover one
view from another, and enhances the recoverability of the data. On the
other hand, 𝐻(𝒁̃𝑗

|𝒁̃𝑗′ ) measures the amount of information in 𝒁̃𝑗 con-
ditional on 𝒁̃𝑗′ . Therefore, minimizing 𝐻(𝒁̃𝑗

|𝒁̃𝑗′ ), which corresponds
to the process of recovering missing views, promotes the elimination of

inconsistent information across views, thereby improving the learning

4 
of consistent representations. Considering the above, it is evident that
ata recovery and cross-view consistency learning can be handled
imultaneously and mutually reinforcing each other.

It can be obtained from Fig. 3 that 𝒁̃𝑗 is completely determined
y 𝒁̃𝑗′ if and only if the conditional entropy 𝐻(𝒁̃𝑗

|𝒁̃𝑗′ ) = −E
(𝒁̃𝑗 ,𝒁̃𝑗′ )

[𝑙 𝑜𝑔(𝒁̃𝑗
|𝒁̃𝑗′ )] = 0, where (𝒁̃𝑗

|𝒁̃𝑗′ ) is a probability distribution.
owards this end, we adopt a general solution that maximizes the

ower bound E
(𝒁̃𝑗 ,𝒁̃𝑗′ )

[𝑙 𝑜𝑔(𝒁̃𝑗
|𝒁̃𝑗′ )] of E

(𝒁̃𝑗 ,𝒁̃𝑗′ )
[𝑙 𝑜𝑔(𝒁̃𝑗

|𝒁̃𝑗′ )], where

(𝒁̃𝑗
|𝒁̃𝑗′ ) is a variational distribution.

In terms of variational distribution, (⋅) can be of any type, for
example a Gaussian distribution or a Laplace distribution. In our exper-
iments, we assume (⋅) is a Gaussian distribution  (𝒁̃𝑗

|𝜅(𝑗′)(𝒁̃𝑗′ ), 𝜎𝐈),
where 𝜅(𝑗′)(⋅) is a parameterized model that maps 𝒁̃𝑗′ to 𝒁̃𝑗 , and 𝜎𝐈 is
he variance matrix. By ignoring the Gaussian distribution constants,
aximizing E

(𝒁̃𝑗 ,𝒁̃𝑗′ )
[𝑙 𝑜𝑔(𝒁̃𝑗

|𝒁̃𝑗′ )] is equivalent to:

minE
(𝒁̃𝑗 ,𝒁̃𝑗′ )

‖

‖

‖

‖

𝒁̃𝑗 − 𝜅(𝑗′)(𝒁̃𝑗′ )
‖

‖

‖

‖

2

2
(1)

where ‖⋅‖22 denotes the squared Euclidean distance. E represents the
mean of the squared Euclidean distance between 𝒁̃𝑗 and 𝜅(𝑗′)(𝒁̃𝑗′ )
under the probability distribution (𝒁̃𝑗

|𝒁̃𝑗′ ).
With the above dual mapping, the missing representation 𝒁̃𝑗 can be

easily predicted from 𝒁̃𝑗′ , which is denoted as:

𝒁̃𝑗 = 𝜅(𝑗′)(𝒁̃𝑗′ ) = 𝜅(𝑗′)(𝑓 (𝑗′)
𝜃(𝑗′)

(𝑿𝑗′ )) (2)

where 𝑓 (𝑗′)(⋅) is the encoder of the 𝑗′th view, and 𝜃(𝑗′) is the 𝑗′th encoder
parameter. 𝒁̃𝑗′ is the representation of 𝑿𝑗′ .

We further define the dual prediction objective as:

𝑃 =
‖

‖

‖

‖

𝜅(𝑗)(𝒁̃𝑗 ) − 𝒁̃𝑗′‖
‖

‖

‖

2

2
+
‖

‖

‖

‖

𝜅(𝑗′)(𝒁̃𝑗′ ) − 𝒁̃𝑗‖
‖

‖

‖

2

2
(3)

Within-view reconstruction objective:MTS are usually redundant
nd randomly noisy, so mainstream methods always learn significant
epresentations from the original features. The autoencoder is a widely

used unsupervised model for mapping original features into a specific
feature space. In our method, we implement the autoencoder struc-
ture using the GRU neural network. We process each individual view
using an autoencoder to learn its latent representation 𝒁𝑗 . This is
accomplished by minimizing the reconstruction loss, denoted as 𝑍 ,
which serves as the objective function for learning the underlying
patterns within the data. We impose a reconstruction objective con-
straint on low-level features 𝒁𝑗 rather than high-level features 𝑯 𝑗 .
This is because, after multiple extractions and transformations, the fea-
ture representation tends to contain increasingly complex information,
which may deviate from the original data structure. The reconstruction
objective for all views is as follows:

𝑍 =
𝐷
∑

𝑗=1

𝑁
∑

𝑖=1

‖

‖

‖

‖

𝒙𝑗𝑖 − 𝑔(𝑗)
𝜙(𝑗)

(𝒛𝑗𝑖 )
‖

‖

‖

‖

2

2
(4)

where 𝒙𝑗𝑖 represents the 𝑖th sample of 𝑿𝑗 , 𝑗 ∈ {1, 2,… , 𝐷}. 𝒛𝑗𝑖 ∈ R𝑑

epresents the feature representation of 𝒙𝑗𝑖 , and 𝑑 is the dimension of
ow-level features. 𝑔(𝑗)(⋅) represent the decoder of the 𝑗th view, and 𝜙(𝑗)

s the 𝑗th decoder parameter. Thus, the representation of the 𝑖th sample
n the 𝑗th view can be expressed as follows:

𝒛𝑗𝑖 = 𝑓 (𝑗)
𝜃(𝑗)

(𝒙𝑗𝑖 ) (5)

where 𝑓 (𝑗)(⋅) is the encoder of the 𝑗th view, and 𝜃(𝑗) is the 𝑗th encoder
parameter. With Eq. (4), the model retains as much view information
as possible.

Cross-view contrastive learning objective: Since the low-level
eatures {𝒁𝑗}𝐷𝑗=1 ∈ R𝑁×𝑑 of each view obtained from Eq. (4) contain

both common semantics and view-private information. Some MVC
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Fig. 1. The MVCIMTS model.
Fig. 2. Dual prediction mechanism.

Fig. 3. Theoretical explanation.

methods explore the common semantics and learn consistent multi-
view features by enforcing a consistency objective on {𝒁𝑗}𝐷𝑗=1. In
addition, these methods utilize Eq. (4) to impose constraints on {𝒁𝑗}𝐷𝑗=1
during the reconstruction process to avoid model collapse. However,
this strategy forces both the consistency objective and the reconstruc-
tion objective to rely on the same set of features, potentially creating
a conflict that degrades the quality of {𝒁𝑗}𝐷𝑗=1. This is because the
consistency objective aims to learn the common semantics, whereas the
reconstruction objective seeks to preserve the view-private information.

To address the above problem, we consider {𝒁𝑗}𝐷𝑗=1 as low-level
features and proceed to learn an additional layer of features, i.e.,
5 
high-level features. To this end, we stack a multilayer perceptron (MLP)
on {𝒁𝑗}𝐷𝑗=1, named feature MLP, to obtain the high-level features
{𝑯 𝑗}𝐷𝑗=1, where each 𝒉𝑗𝑖 ∈ R𝑑′ and 𝑑′ is the dimension of high-level
features. The feature MLP is a single-layer linear layer, denoted as
𝐹 ({𝒁𝑗}𝐷𝑗=1;𝑾 𝐻 ), where 𝑾 𝐻 represents the parameters of this layer.
After that, we achieve the consistency objective by employing con-
trastive learning in the high-level feature space, enabling {𝑯 𝑗}𝐷𝑗=1 to
focus on learning the common semantics across all views.

Next, we introduce the contrastive learning strategy used in our
model in detail. Different from some existing contrastive learning ap-
proaches, we regard each variable within MTS as an individual view.
Moreover, we treat MTS from the same sample or within the same
cluster as positive sample pairs and the remaining MTS as negative
sample pairs, thus constructing positive and negative sample pairs
of multiple views for contrastive learning. Then, we learn consistent
representations by employing contrastive learning from a multi-view
perspective. For each high-level feature 𝒉𝑗𝑖 , there are (𝐷 ⋅𝑁 − 1) feature
pairs, denoted as {𝒉𝑗𝑖 ,𝒉

𝑗′
𝑖′ }

𝑗=1,…,𝐷
𝑖=1,…,𝑁 . Among these, {𝒉𝑗𝑖 ,𝒉

𝑗′
𝑖 }𝑗≠𝑗′ are (𝐷− 1)

positive feature pairs, representing features from the same sample,
while the remaining 𝐷(𝑁 − 1) feature pairs are negative feature pairs,
representing features from different sample. In contrastive learning, the
similarity of positive pairs should be maximized, and the similarity of
negative pairs should be minimized. We utilize the cosine similarity to
measure the similarity between two features:

𝑑(𝒉𝑗𝑖 ,𝒉
𝑗′
𝑖′ ) =

⟨𝒉𝑗𝑖 ,𝒉
𝑗′
𝑖′ ⟩

‖𝒉𝑗𝑖 ‖‖𝒉
𝑗′
𝑖′ ‖

(6)

where ⟨⋅, ⋅⟩ is dot product operator. The feature contrastive loss between
𝑯 𝑗 and 𝑯 𝑗′ is denoted as follows:

𝓁(𝑗 𝑗′)
𝑓 𝑐 = − 1

𝑁

𝑁
∑

𝑖=1
𝑙 𝑜𝑔 𝑒𝑑(𝒉

𝑗
𝑖 ,𝒉

𝑗′
𝑖 )∕𝜏𝐹

∑𝑁
𝑖′=1

∑

𝑣=𝑗 ,𝑗′ 𝑒𝑑(𝒉
𝑗
𝑖 ,𝒉

𝑣
𝑖′
)∕𝜏𝐹 − 𝑒1∕𝜏𝐹

(7)

where 𝜏𝐹 denotes the tuning factor, which governs the similarity in
contrastive learning between high-level features, and is set to 1.
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We define the feature contrastive loss across all views as follows:

𝐻 = 1
2

𝐷
∑

𝑗=1

∑

𝑗′≠𝑗
𝓁(𝑗 𝑗′)
𝑓 𝑐 (8)

Accordingly, the high-level features of each view are denoted as
𝑯 𝑗 = 𝑾 𝐻𝒁𝑗 = 𝑾 𝐻𝑓 (𝑗)(𝑿𝑗 ). The encoder 𝑓 (𝑗)(⋅) serves to filter
out random noise from 𝑿𝑗 to obtain 𝒁𝑗 , and then we perform the
reconstruction objective on 𝒁𝑗 to recover the original data. This process
not only mitigates the risk of model collapse but also aids in the preser-
vation of both common semantics and view-private information within
𝒁𝑗 . 𝑾 𝐻 facilitates filtering out view-private information in {𝒁𝑗}𝐷𝑗=1 to
obtain {𝑯 𝑗}𝐷𝑗=1, and then the consistency objective on {𝑯 𝑗}𝐷𝑗=1 allows
it to mine common semantics from all views. Thus, the clusters formed
based on high-level features are close to true semantic clusters with-
out meaningless noise. Intuitively, high-level features within the same
cluster are close to each other, resulting in densely shaped regions.

To obtain semantic features, we operate on low-level features ex-
tracted from the raw data. Specifically, the clustering assignment
𝑸𝑗}𝐷𝑗=1 ∈ R𝑁×𝐾 for all views is obtained through a shared MLP stacked
n the low-level features {𝒁𝑗}𝐷𝑗=1, named label MLP, i.e., 𝐿({𝒁𝑗}𝐷𝑗=1;

𝑾 𝑄). We learn {𝑸𝑗}𝐷𝑗=1 from {𝒁𝑗}𝐷𝑗=1 rather than from {𝑯 𝑗}𝐷𝑗=1,
because this avoids interaction between 𝑾 𝐻 and 𝑾 𝑄. Also, 𝑾 𝐻 and

𝑄 are not influenced by the gradient of 𝑍 . The last layer of the label
MLP is set to a 𝑠𝑜𝑓 𝑡𝑚𝑎𝑥(⋅) operation that outputs a probability value
𝑞𝑗𝑖𝑘, which denotes the probability that the 𝑖th sample in the 𝑗th view
belongs to the 𝑘th cluster. As a result, semantic labels are identified by
the maximum element value in the cluster assignment.

However, in real scenarios, some views of a sample may be assigned
ncorrect cluster labels due to misleading view-private information. To

enhance robustness, it is necessary to achieve clustering consistency,
meaning that the semantic features across all views of the same sample
should correspond to the same cluster label. In other words, {𝑸𝑗

⋅𝑘}
𝐷
𝑗=1

needs to be consistent. To achieve this consistency objective, we adopt
contrastive learning, similar to the process we used to learn high-level
eatures. For the 𝑗th view, the semantic features 𝑸𝑗

⋅𝑘 have (𝐷⋅𝐾− 1) label
pairs, i.e., {𝑸𝑗

⋅𝑘,𝑸
𝑗′
⋅𝑘′}

𝑗=1,…,𝐷
𝑘=1,…,𝐾 , where {𝑸𝑗

⋅𝑘,𝑸
𝑗′
⋅𝑘}𝑗≠𝑗′ are (𝐷 − 1) positive

label pairs and the remaining 𝐷(𝐾 − 1) label pairs are negative label
pairs. Accordingly, we define the label contrastive loss between 𝑸𝑗 and
𝑸𝑗′ as follows:

𝓁(𝑗 𝑗′)
𝑙 𝑐 = − 1

𝐾

𝐾
∑

𝑘=1
𝑙 𝑜𝑔 𝑒𝑑(𝑸

𝑗
⋅𝑘 ,𝑸

𝑗′
⋅𝑘 )∕𝜏𝐿

∑𝐾
𝑘′=1

∑

𝑣=𝑗 ,𝑗′ 𝑒𝑑(𝑸
𝑗
⋅𝑘 ,𝑸

𝑣
⋅𝑘′

)∕𝜏𝐿 − 𝑒1∕𝜏𝐿
(9)

where 𝜏𝐿 denotes the tuning factor, which governs the similarity in
contrastive learning between semantic features, and is set to 1.

We define the clustering-oriented consistency objective as:

𝑄 = 1
2

𝐷
∑

𝑗=1

∑

𝑗′≠𝑗
𝓁(𝑗 𝑗′)
𝑙 𝑐 +

𝐷
∑

𝑗=1

𝐾
∑

𝑘=1
𝑠𝑗𝑘𝑙 𝑜𝑔 𝑠

𝑗
𝑘 (10)

where 𝑠𝑗𝑘 = 1
𝑁

∑𝑁
𝑖=1 𝑞

𝑗
𝑖𝑘. The first part of Eq. (10) is designed to learn

clustering consistency across all views. The second part serves as a
regularization term to prevent all sample from being assigned to a
single cluster.

Fine-tuning strategy: The model learns high-level features {𝑯 𝑗}𝐷𝑗=1
nd semantic features {𝑸𝑗}𝐷𝑗=1 by the multi-view contrastive learning.

We refine the clustering of the semantic features {𝑸𝑗}𝐷𝑗=1 by match-
ing them with the clusters formed from high-level features {𝑯 𝑗}𝐷𝑗=1.
This fine-tuning process utilizes cluster information in the high-level
features to improve the clustering accuracy of the semantic features.
Specifically, we adopt k-means to obtain cluster information. For the
th view, the cluster labels formed from high-level features of the 𝑖th
ample are as follows:

𝑝𝑗𝑖 = ar g min
𝑘

‖

‖

‖

𝒉𝑗𝑖 − 𝒄𝑗𝑘
‖

‖

‖

2

2
(11)

where {𝒉𝑗𝑖 }
𝑁
𝑖=1 represent the high-level features of the 𝑗th view of all

sample, {𝒄𝑗 }𝐾 denote the 𝐾 cluster centers of the 𝑗th view, and
𝑘 𝑘=1

6 
𝒑𝑗 = {𝑝𝑗𝑖 }𝑁𝑖=1 denote the cluster labels formed from high-level features
of all sample of the 𝑗th view.

We define the semantic labels for the 𝑗th view as 𝒚𝑗 = {𝑦𝑗𝑖 }𝑁𝑖=1 ∈ R𝑁 ,
where each element 𝑦𝑗𝑖 can be calculated as Eq. (12), which is output
by the label MLP.

𝑦𝑗𝑖 = ar g max
𝑘

𝑞𝑗𝑖𝑘 (12)

Then, we modify 𝒚𝑗 by the following matching formula:

min
𝑨𝑗

𝑴 𝑗𝑨𝑗 , 𝑠.𝑡.
𝐾
∑

𝑘=1
𝑎𝑗𝑘𝑘′ = 1,

𝐾
∑

𝑘′=1
𝑎𝑗𝑘𝑘′ = 1 (13)

where 𝑨𝑗 ∈ {0, 1}𝐾×𝐾 is the boolean matrix and 𝑴 𝑗 ∈ R𝐾×𝐾 denotes
the cost matrix. 𝑴 𝑗 = max𝑘,𝑘′ 𝑚̃

𝑗
𝑘𝑘′ − 𝑴̃ 𝑗 and 𝑚̃𝑗

𝑘𝑘′ =
∑𝑁

𝑖=1 I[𝑦
𝑗
𝑖 = 𝑘]I[𝑝𝑗𝑖 =

𝑘′], where I[⋅] represents the indicator function. The modified cluster
assignments 𝒑̂𝑗𝑖 ∈ {0, 1}𝐾 is a one-hot vector. The 𝑘th element of 𝒑̂𝑗𝑖 is 1
when 𝑘 = 𝑘I[𝑎𝑗𝑘𝑘′ = 1]I[𝑝𝑗𝑖 = 𝑘′], 𝑘, 𝑘′ ∈ {1, 2,… , 𝐾}. We then fine-tune
the model by cross-entropy loss:

𝑌 = −
𝐷
∑

𝑗=1
𝑷̂ 𝑗 𝑙 𝑜𝑔𝑸𝑗 (14)

where 𝑷̂ 𝑗 = [𝒑̂𝑗1, 𝒑̂
𝑗
2,… , 𝒑̂𝑗𝑁 ] ∈ R𝑁×𝐾 . In this way, we can utilize the

luster information contained in the high-level features to improve
clustering results. Finally, the cluster label of the 𝑖th sample is:

𝑦𝑖 = ar g max
𝑘

( 1
𝐷

𝐷
∑

𝑗=1
𝑞𝑗𝑖𝑘) (15)

3.4. Optimization

Lastly, the overall objective function of our proposed MVCIMTS con-
sists of three components: reconstruction objective, prediction objec-
tive, and contrastive learning objective, which are defined as follows:

𝑀 𝑉 𝐶 𝐼 𝑀 𝑇 𝑆 = 𝑍 + 𝜆0𝑃 + 𝜆1𝐻 + 𝜆2𝑄, (16)

where the prediction objective 𝑃 in Eq. (3) is designed to infer
the missing views. 𝑍 is the within-view reconstruction objective in
Eq. (4), aiming to learn view-specific representations, and maintain the
riginal data structure. The contrastive learning objective includes the

cross-view common semantic consistency objective 𝐻 in Eq. (8) and
the clustering consistency objective 𝑄 in Eq. (10). Specifically, 𝐻 is
esponsible for learning the common semantics of all views, and 𝑄
earns the clustering consistency of all views. The coefficients 𝜆0 is set

to a fixed value of 1, and 𝜆1 and 𝜆2 are set to 0.1.
The complete optimizing process is described in Algorithm 1.

4. Results

In this section, we evaluate the effectiveness of our proposed
VCIMTS by comparing it with five state-of-the-art IMVC methods

nd two methods designed for temporal data on seven MTS datasets.
irst, we present the experimental settings in Section 4.1. Then, we
ompare our MVCIMTS with state-of-the-art methods in Section 4.2.

And, we perform robustness experiments with different missing rates
in Section 4.3. Further, we also present the visualization results in
Section 4.4. After that, we conduct the ablation studies and parameter
analysis in Sections 4.5 and 4.6, respectively. Finally, we investigate
onvergence analysis in Section 4.7.

4.1. Experimental settings

Baseline algorithms: To evaluate the performance of our proposed
ethod, we compared it with the following five state-of-the-art IMVC

methods and two temporal methods.



Y. Li et al.

m

p
C
n
d
o
w

w

d

t
t
p

Information Fusion 117 (2025) 102812 
Algorithm 1: The MVCIMTS Algorithm
Input: Multivariate time series {𝑿𝑗}𝐷𝑗=1; Number of clusters 𝐾; The coefficients 𝜆0, 𝜆1, and 𝜆2; Tuning factors 𝜏𝐹 and 𝜏𝐿; Batch size 𝑏;

Maximum iteration: 𝑀 𝑎𝑥𝑒𝑝𝑜𝑐 ℎ.
Output: Clustering results 𝒚.

1 Initialize {𝜃(𝑗), 𝜙(𝑗)}𝐷𝑗=1 with Eq. (4);
2 for 𝑒𝑝𝑜𝑐 ℎ = 1 to 𝑀 𝑎𝑥𝑒𝑝𝑜𝑐 ℎ do
3 for batch_size=𝑏 in 𝑿 do
4 Perform imputation with Eq. (3), and obtain the low-level features {𝒁𝑗}𝐷𝑗=1 with Eq. (4);
5 Obtain the high-level features {𝑯 𝑗}𝐷𝑗=1 with (8), and the semantic features {𝑸𝑗}𝐷𝑗=1 with (10);
6 Compute initial cluster labels formed from high-level features with Eq. (11);
7 Compute initial semantic labels with Eq. (12);
8 Optimize 𝑾 𝐻 , 𝑾 𝑄, {𝜃(𝑗), 𝜙(𝑗)}𝐷𝑗=1 with Eq. (16);
9 Modify semantic labels by using cluster labels formed from high-level features with Eq. (13);
10 Fine-tune 𝑾 𝑄 with Eq. (14);
11 Obtain final cluster labels with Eq. (15).

12 Return Clustering results 𝒚.
d

w
m

t
d

• APADC [37] is a deep IMVC method that considers distribution
alignment in feature learning.

• DIMVC [65] presents a deep IMVC framework that maps com-
plete data embedding features into a high-dimensional space to
discover linear separability without fusion.

• CPSPAN [54] proposes a cross-view partial sample and prototype
alignment deep network. It employs pair-observed data alignment
to guide the construction of instance-to-instance correspondence
between views.

• TCIMC [19] utilizes the tensor Schatten 𝑝-norm-based comple-
tion technique to compare the similarity of interview graphs,
incorporating complementary information and spatial structure.

• PIMVC [23] proposes a graph-regularized projective consensus
representation learning model by learning the consensus repre-
sentation in a unified low-dimensional subspace.

• CRLI [8] is a deep learning-based method for single-view cluster-
ing, specifically designed for incomplete time series.

• VaDER [72] is an end-to-end model, which utilizes a Gaussian
mixture variational autoencoder with two LSTMs to cluster mul-
tivariate time series with missing data.

For a fair comparison, all baselines are compared using the recom-
ended parameters and network structures.
Network architectures and implementation details: For our pro-

osed MVCIMTS,1 the following settings are adopted for all datasets.
oncretely, the autoencoders of all views are implemented by GRU
eural networks with the same structure. The dimensionality of embed-
ings is set to 10. The activation function is ReLU. We adopt Adam to
ptimize the model with a learning rate of 0.0001. In the experiments,
e set the pre-training epoch of autoencoders to 300. The batchsize is

set to 64. The experiment is implemented on PyTorch and Windows 11
ith an NVIDIA 3060Ti GPU.
Datasets: We use seven datasets in our experiments,2 the detailed

escription of these datasets is provided in Table 2. We construct
incomplete multi-view datasets with varying missing rates (0.1, 0.3, 0.5,
0.7).

Evaluation metrics: The clustering effectiveness is evaluated by
he rand index (RI), normalized mutual information (NMI), and clus-
ering accuracy (ACC). The higher values indicate better clustering
erformance.

1 Code available: https://github.com/Du-Team/MVCIMTS.
2 Data available: https://www.timeseriesclassification.com/dataset.php.
7 
Table 2
Details of the seven multivariate time series benchmark datasets.

Dataset Samples Dimensions Length Classes

BM 80 6 100 4
Epilepsy 275 3 207 4
SWJ 27 4 2500 3
LP4 117 6 15 3
LP5 164 6 15 5
PD 10 992 2 8 10
RS 303 6 30 4

4.2. Experimental results and analysis

Table 3 presents experimental results of all methods on seven
atasets, where the optimal result is bold and the second best result

is underlined.
From Table 3, we can observe that DIMVC performs the worst of all

multi-view methods. For instance, DIMVC consistently produces NMI
values below 0.1 on the SWJ dataset across four different missing
rates, whereas all other methods achieve NMI values exceeding 0.1. The
observed performance of DIMVC may be attributed to its reliance on
mapping multi-view embedding features to a high-dimensional space
to extract complementary information. This strategy potentially neces-
sitates a substantial amount of data for effective training. Consequently,

hen the information content within the views is insufficient, the
ethod may fail to yield adequate complementary information, result-

ing in diminished performance. APADC, like DIMVC, is a deep learning
approach. In the experiments, APADC achieves superior performance
to DIMVC. The main reason for this is that APADC considers distribu-
ional alignment between features, which maximizes consistency across
ifferent views. Compared to DIMVC, TCIMC and PIMVC are capable

of capturing both complementary information and spatial structure
information between different views, resulting in better performance.
CPSPAN outperforms the other four methods, likely due to its superior
ability to learn cross-view information. It takes into account the dif-
ferences across views while learning cross-view consistency. Although
CRLI and VaDER are specifically designed for multivariate time series,
they generally perform worse than most multi-view methods. The
reason for this could be that the single-view approach they employ does
not fully utilize the richness of information contained within the time
series nor the complementarity between variables.

For our method, the following conclusions can be drawn: (1) First,
the performance of the proposed MVCIMTS is either comparable to
or significantly better than that of other methods on all datasets. For
instance, our method obtains the highest metric values for all missing

https://github.com/Du-Team/MVCIMTS
https://www.timeseriesclassification.com/dataset.php


Y. Li et al.

w

Information Fusion 117 (2025) 102812 
Table 3
Clustering results of all methods on seven datasets..

Missing rates 0.1 0.3 0.5 0.7

Metrics RI NMI ACC RI NMI ACC RI NMI ACC RI NMI ACC

BM

APADC 0.795 0.681 0.65 0.717 0.538 0.565 0.708 0.535 0.525 0.697 0.485 0.515
DIMVC 0.619 0.087 0.392 0.605 0.084 0.378 0.597 0.082 0.351 0.582 0.075 0.385
CPSPAN 0.599 0.412 0.45 0.513 0.319 0.425 0.619 0.398 0.45 0.481 0.285 0.4
TCIMC 0.739 0.483 0.625 0.768 0.507 0.7 0.667 0.336 0.54 0.376 0.091 0.335
PIMVC 0.753 0.426 0.65 0.712 0.307 0.575 0.641 0.234 0.525 0.555 0.096 0.325
CRLI 0.551 0.119 0.35 0.653 0.171 0.5 0.606 0.118 0.4 0.604 0.165 0.375
VaDER 0.412 0.154 0.35 0.231 0.12 0.25 0.455 0.256 0.475 0.258 0.047 0.275
IMVCTS 0.858 0.728 0.825 0.794 0.595 0.725 0.786 0.588 0.7 0.804 0.601 0.75

Epilepsy

APADC 0.667 0.265 0.517 0.629 0.14 0.393 0.617 0.086 0.366 0.533 0.231 0.458
DIMVC 0.65 0.104 0.382 0.637 0.093 0.365 0.625 0.035 0.345 0.635 0.074 0.379
CPSPAN 0.688 0.268 0.453 0.691 0.251 0.482 0.687 0.247 0.474 0.682 0.212 0.474
TCIMC 0.67 0.272 0.477 0.536 0.157 0.419 0.575 0.082 0.416 0.525 0.075 0.336
PIMVC 0.622 0.056 0.343 0.646 0.067 0.416 0.623 0.027 0.343 0.554 0.044 0.328
CRLI 0.56 0.073 0.355 0.551 0.088 0.37 0.575 0.079 0.348 0.543 0.067 0.333
VaDER 0.632 0.061 0.348 0.629 0.035 0.326 0.622 0.019 0.326 0.618 0.023 0.326
IMVCTS 0.836 0.608 0.774 0.765 0.477 0.696 0.744 0.41 0.667 0.739 0.389 0.652

SWJ

APADC 0.525 0.306 0.587 0.513 0.286 0.541 0.458 0.245 0.517 0.462 0.259 0.522
DIMVC 0.522 0.057 0.347 0.519 0.039 0.302 0.496 0.068 0.318 0.476 0.009 0.313
CPSPAN 0.5 0.124 0.5 0.5 0.295 0.527 0.5 0.109 0.417 0.53 0.189 0.5
TCIMC 0.626 0.329 0.556 0.561 0.224 0.5 0.496 0.174 0.5 0.452 0.109 0.377
PIMVC 0.61 0.223 0.574 0.591 0.179 0.546 0.482 0.125 0.501 0.457 0.103 0.434
CRLI 0.457 0.123 0.4 0.505 0.113 0.467 0.552 0.295 0.533 0.391 0.191 0.467
VaDER 0.591 0.27 0.533 0.543 0.269 0.47 0.569 0.184 0.458 0.577 0.178 0.428
IMVCTS 0.712 0.45 0.667 0.636 0.333 0.583 0.604 0.299 0.542 0.598 0.286 0.53

LP4

APADC 0.637 0.37 0.709 0.6 0.312 0.703 0.601 0.289 0.684 0.536 0.197 0.667
DIMVC 0.622 0.12 0.357 0.61 0.094 0.347 0.591 0.059 0.312 0.583 0.071 0.348
CPSPAN 0.627 0.371 0.682 0.544 0.212 0.641 0.598 0.315 0.65 0.597 0.313 0.684
TCIMC 0.614 0.29 0.638 0.618 0.367 0.609 0.538 0.118 0.479 0.519 0.107 0.479
PIMVC 0.533 0.187 0.513 0.57 0.196 0.496 0.557 0.108 0.573 0.5 0.022 0.444
CRLI 0.461 0.022 0.607 0.455 0.035 0.615 0.503 0.011 0.359 0.509 0.027 0.496
VaDER 0.562 0.223 0.547 0.537 0.048 0.47 0.555 0.1 0.547 0.538 0.032 0.496
IMVCTS 0.638 0.407 0.721 0.621 0.41 0.658 0.623 0.406 0.692 0.622 0.398 0.65

LP5

APADC 0.411 0.156 0.333 0.309 0.121 0.312 0.429 0.181 0.338 0.333 0.128 0.32
DIMVC 0.468 0.063 0.303 0.48 0.061 0.309 0.443 0.076 0.336 0.431 0.044 0.295
CPSPAN 0.353 0.214 0.317 0.343 0.198 0.311 0.34 0.195 0.308 0.322 0.166 0.297
TCIMC 0.78 0.401 0.581 0.772 0.374 0.548 0.725 0.258 0.412 0.597 0.098 0.299
PIMVC 0.736 0.328 0.451 0.727 0.277 0.506 0.67 0.159 0.384 0.576 0.107 0.366
CRLI 0.484 0.033 0.287 0.523 0.062 0.287 0.634 0.068 0.311 0.638 0.023 0.268
VaDER 0.666 0.05 0.287 0.674 0.043 0.281 0.673 0.064 0.305 0.673 0.105 0.335
IMVCTS 0.803 0.452 0.592 0.718 0.374 0.488 0.716 0.367 0.482 0.717 0.356 0.476

PD

APADC 0.876 0.518 0.558 0.872 0.525 0.556 0.88 0.533 0.599 0.888 0.551 0.616
DIMVC 0.569 0.225 0.437 0.571 0.22 0.449 0.568 0.129 0.405 0.559 0.07 0.394
CPSPAN 0.898 0.592 0.62 0.902 0.608 0.666 0.897 0.598 0.635 0.895 0.594 0.623
TCIMC 0.818 0.002 0.117 0.813 0.002 0.116 0.815 0.003 0.117 0.804 0.002 0.116
PIMVC 0.675 0.267 0.303 0.198 0.002 0.109 0.308 0.003 0.111 0.589 0.005 0.113
CRLI 0.823 0.052 0.188 0.812 0.042 0.167 0.813 0.044 0.173 0.806 0.03 0.154
VaDER 0.81 0.006 0.128 0.817 0.005 0.123 0.818 0.005 0.122 0.818 0.013 0.139
IMVCTS 0.926 0.708 0.767 0.913 0.623 0.652 0.905 0.616 0.65 0.903 0.608 0.657

RS

APADC 0.53 0.106 0.371 0.539 0.116 0.375 0.458 0.233 0.433 0.399 0.153 0.376
DIMVC 0.645 0.279 0.531 0.605 0.148 0.434 0.625 0.143 0.423 0.592 0.134 0.4
CPSPAN 0.668 0.272 0.49 0.649 0.239 0.497 0.649 0.251 0.45 0.64 0.194 0.424
TCIMC 0.662 0.153 0.399 0.667 0.268 0.523 0.648 0.189 0.477 0.593 0.111 0.37
PIMVC 0.676 0.279 0.55 0.678 0.256 0.51 0.653 0.178 0.483 0.598 0.076 0.364
CRLI 0.38 0.022 0.296 0.503 0.028 0.296 0.589 0.039 0.329 0.617 0.034 0.336
VaDER 0.641 0.086 0.441 0.633 0.066 0.375 0.629 0.037 0.362 0.616 0.011 0.296
IMVCTS 0.852 0.699 0.775 0.85 0.728 0.737 0.844 0.696 0.73 0.841 0.686 0.717
t
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rate cases in the four datasets: BM, Epilepsy, SWJ, and RS. On LP5
ith a miss rate of 0.7, MVCIMTS achieves the RI value of 0.717,

the NMI value of 0.356, and the ACC value of 0.476, which are 12%,
19%, and 11% higher than the second-best method, respectively. (2)
Second, MVCIMTS does not exhibit an overwhelming advantage when
confronted with LP4, LP5, and PD datasets, which are characterized
by short time steps. The probable reason for this may be the insuf-
ficient number of data features learned, which hinders the capture
of long-term dependencies within the sequence. However, MVCIMTS
demonstrates the greatest improvement on datasets with high miss-
ing rates. For instance, on LP4 and RS with a missing rate of 0.7,
MVCIMTS outperforms CPSPAN by approximately 12% and 20% in RI,
respectively.
 i

8 
The reasons for our method’s advanced results can be explained by
he following factors: (1) Our method learns different level features
y its multi-level feature learning framework. Then it implements the
econstruction objective and consistency objective on different feature
paces in a fusion-free manner to avoid conflicts between the two
bjectives. This strategy enables mining common semantics across
iews while maintaining the original information of each view. Also,
t protects the representation learning process from the influence of
ow-quality views, while reducing the loss of association information
etween views. (2) Our method leverages the characteristics of MTS by
mploying contrastive learning from a multi-view perspective to extract
ommon semantics across different views. By doing so, it can avoid the
ntroduction of uncertainty and enhance representation quality.
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Fig. 4. The clustering NMI of all methods with different missing rates on four datasets.
𝜆

4.3. Robustness analysis

Fig. 4 depicts the trend of NMI metric for all methods as the missing
rate increases from 0.1 to 0.7 across BM, Epilepsy, LP4, and RS datasets.
Overall, the NMI values for all methods decrease as the missing rate
ncreases. This is because the more missing data there is, the more
hallenging it is to learn data distribution. Further, we can observe
hat with the increase in the missing rate, the proposed MVCIMTS’s

performance slowly declined in a certain area, while the decline trend
f the comparison algorithms is evident, especially on the BM and
P4 datasets. Since our MVCIMTS treats data recovery and consistency
earning as a whole, and learns a sufficient representation by jointly

optimizing them. This reduces uncertainty in the imputation process,
resulting in significant robustness.

4.4. Representation visualization

To complement the evaluation of our method’s performance, we
urther investigate its effectiveness in data recovery. For this purpose,
e apply t-SNE visualization to the embedded features and centroids

learned by MVCIMTS on RS dataset with four different missing rates,
s shown in Fig. 5. In the figure, different clusters are highlighted in

different colors, cluster centers are marked with asterisks, sample with
complete data are shown as dots, and sample with incomplete data are
indicated by crosses. The visualization results indicate that the different
clusters are well separated. Consequently, it can be concluded that
our method demonstrates excellent robustness under different missing
rates.

4.5. Ablation studies

We conduct ablation studies on the loss components in Eqs. (14) and
16) to demonstrate the importance of each component of our method.

Table 4 presents the detailed results of ablation study, where
√

denotes
9 
the adoption of a loss component, and the optimal performance values
are emphasized in bold.

According to the experimental results shown in Table 4, we could
observe that: (1) The best performance is obtained when full loss terms
are used, indicating that all the components play an indispensable
role in MVCIMTS. Furthermore, the performance achieved using two
loss functions is consistently inferior to the case of using three loss
functions, which also validates the significance of each component.
(2) (H) perform better than (D), suggesting that reconstruction ob-
jective 𝑍 plays an essential role. It preserves the characteristics of
each view as much as possible to avoid feature space collapse during
feature learning. (3) (H) perform better than (E), indicating that the
prediction objective 𝑃 plays a crucial role in recovering missing
views. Moreover, by conducting 𝑃 , we enable data recovery and cross-
view consistency learning to promote each other. Comparing (F) with
(H), it is clear that the learned high-level features by 𝐻 improve
clustering effectiveness. We speculate that the consistent learning im-
plemented by 𝐻 , which maximizes common semantics across views
while filtering out irrelevant private information from individual views,
thereby improving clustering effectiveness. Further, 𝐻 provides more
performance improvements than 𝑃 . For instance, in RS on RI and NMI,
(H) outperforms (E) by about 0.5% and 1%, while (H) outperforms
(F) by about 1.46% and 4.48%, respectively. This suggests that it is
necessary to maintain the similarity of representation learning across
views in the multi-view learning.

4.6. Parameter analysis

The proposed MVCIMTS consists of five trade-off parameters, i.e.,
0, 𝜆1, 𝜆2, 𝜏𝐹 , and 𝜏𝐿. In spite of the promising performance of

MVCIMTS with these fixed parameters, it is still important to explore
the full potential of our method and the influence of these parameters.
We conduct experiments on SWJ and RS with a missing rate of 0.5, and
utilize the RI and ACC metrics for performance evaluation.
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Fig. 5. Visualization of the embedding features and centroids on RS with four different missing rates via t-SNE. Dots denote the sample with complete data and crosses represent
he sample with incomplete data.
Fig. 6. Performance of the 𝜆0 parameter on SWJ and RS with a missing rate of 0.5.
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Table 4
Ablation experiments on three datasets with the missing rate of 0.5.

Loss components BM Epilepsy RS

𝑍 𝑃 𝐻 𝑌 RI NMI RI NMI RI NMI

(A)
√ √

0.258 0.047 0.719 0.336 0.622 0.117
(B)

√ √

0.54 0.341 0.622 0.145 0.649 0.3
(C)

√ √

0.231 0 0.725 0.371 0.607 0.202
(D)

√ √ √

0.755 0.521 0.721 0.386 0.837 0.675
(E)

√ √ √

0.75 0.568 0.73 0.39 0.838 0.686
(F)

√ √ √

0.749 0.553 0.718 0.384 0.829 0.651
(G)

√ √ √

0.774 0.57 0.724 0.378 0.829 0.648
(H)

√ √ √ √

0.786 0.588 0.744 0.41 0.844 0.696

Firstly, we assess the impact of 𝜆0 on our method’s performance.
oth SWJ and RS datasets are fixed with the following parameters:
1 = 0.1, 𝜆2 = 0.1, 𝜏𝐹 = 1, and 𝜏𝐹 = 1. Fig. 6 depicts the changes

in clustering performance as 𝜆0 varies for SWJ and RS datasets, as
measured by RI and ACC. It is apparent that the clustering performance
fluctuates with the variation of 𝜆0. Accordingly, MVCIMTS requires
specific parameter values for 𝜆0 to maintain clustering accuracy, and
clustering performance reaches its optimal value at 𝜆0 = 1. Therefore,
we recommend setting 𝜆0 to a fixed value of 1.

Next, we evaluate the performance of the proposed method in
elation to 𝜆1 and 𝜆2. The remaining parameters are set to fixed values:
0 = 1, 𝜏𝐹 = 1, and 𝜏𝐿 = 1. Fig. 7 indicates the results of RI and

ACC for varying 𝜆1 and 𝜆2 values on the SWJ and RS datasets. We
hange the value of 𝜆1 and 𝜆2 in the range of {0.001, 0.01, 0.1, 1, 10, 100}.

From the results, we can observe that MVCIMTS performs relatively
smoothly in Fig. 7(c). Additionally, MVCIMTS achieves relatively better
erformance within a certain range of values for 𝜆1 and 𝜆2 in Figs. 7(a),

7(b), and 7(d). The reference value range for 𝜆1 and 𝜆2 is {0.1, 1}.
Finally, we investigate how 𝜏𝐹 and 𝜏𝐿 impact clustering perfor-

mance. As for the remaining parameters, they are fixed: 𝜆0 = 1, 𝜆1 =
0.1, and 𝜆2 = 0.1. Fig. 8 depicts the results of RI and ACC for
varying 𝜏𝐹 and 𝜏𝐿 values on the SWJ and RS datasets. 𝜏𝐹 ranges from
{0.5, 0.6, 0.7, 0.8, 0.9, 1}, and 𝜏𝐿 ranges from {0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}.
Based on the results shown in Figs. 8(a) and 8(b), we recommend
10 
setting 𝜏𝐹 within the range of {0.6, 1}, and 𝜏𝐿 in the range {0.7, 0.8, 1}
o achieve high metrics. As demonstrated in Figs. 8(c) and 8(d), we

can observe that our proposed method exhibits insensitivity to the
arameters 𝜏𝐹 and 𝜏𝐿 on the RS dataset. For simplicity, we set 𝜏𝐹 = 1

and 𝜏𝐿 = 1 in our method.

4.7. Convergence analysis

Fig. 9 shows the loss value trend of MVCIMTS on PD and RS datasets
ith a missing rate of 0.5 as the number of iterations increases. As

hown in the figures, we can observe fluctuations in the loss curve,
hich may be attributed to the alternating optimization strategy em-
loyed during the training process. Furthermore, it can be seen that the
oss value exhibits an overall downward trend and decreases rapidly
uring the first few steps, indicating that MVCIMTS possesses good
onvergence property.

5. Conclusions

In this paper, we propose a novel contrastive learning-based multi-
view clustering method for incomplete multivariate time series. This
method employs a multi-level feature learning framework to learn
features at different levels of the time series, enabling the model
to better understand and exploit structural information within the
ime series. Firstly, we utilize view-specific encoders to learn view-
pecific features at different levels, including low-level, high-level, and
emantic features. Subsequently, we implement distinct objectives in

different feature spaces to mitigate potential conflicts among them
and reduce the loss of association information between views. In ad-
dition, by leveraging the characteristics of multivariate time series, our
method employs contrastive learning from a multi-view perspective
to achieve both representation and clustering consistency, thereby en-
hancing clustering performance. Comparative experimental results on
various datasets show that our proposed MVCIMTS is superior to other
state-of-the-art methods in multi-view clustering tasks for incomplete
multivariate time series.
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Fig. 7. Performance of the 𝜆1 and 𝜆2 parameters on SWJ and RS databases with a missing rate of 0.5.
Fig. 8. Performance of the 𝜏𝐹 and 𝜏𝐿 parameters on SWJ and RS databases with a missing rate of 0.5.
MVCIMTS uses the existing views within a sample to infer the
missing views, inherently assuming that there is a correlation between
the views. However, when there is not a significant correlation between
the views, MVCIMTS may lose its applicability. In the future, we intend
to infer information about missing views from the instances within the
11 
same cluster. We will also focus on the impact of feature distribution
differences between complete and incomplete data on representation
learning. Additionally, we plan to introduce causal reasoning to eval-
uate how variables interact with each other, and to further design
generative and clustering methods.
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Fig. 9. Convergence performance on (a) PD and (b) RS databases with a missing rate of 0.5.
CRediT authorship contribution statement

Yurui Li: Writing – original draft, Visualization, Software, Re-
sources, Methodology, Investigation, Formal analysis, Data curation,
Conceptualization. Mingjing Du: Writing – original draft, Validation,
Supervision, Project administration, Funding acquisition. Xiang Jiang:
Writing – review & editing, Validation. Nan Zhang: Funding acquisi-
ion.

Declaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

Acknowledgments

This work is supported by the National Natural Science Founda-
tion of China (Nos. 62006104, 62006076) and the Key Science and
Technology Innovation Project of Wenzhou (No. ZF2024002).

Data availability

Data will be made available on request.

References

[1] S. Majumdar, A.K. Laha, Corrigendum to "Clustering and classification of time
series using topological data analysis with applications to finance", Expert Syst.
Appl. 166 (2021) 114140.

[2] S. Li, P. Zhang, W. Chen, L. Ye, K.W. Brannan, N.-T. Le, J.-i. Abe, J.P. Cooke,
G. Wang, A relay velocity model infers cell-dependent RNA velocity, Nature
Biotechnol. 42 (1) (2024) 99–108.

[3] Z. Zhou, W. Tang, M. Li, W. Cao, Z. Yuan, A novel hybrid intelligent SOPDEL
model with comprehensive data preprocessing for long-time-series climate
prediction, Remote Sens. 15 (7) (2023) 1951.

[4] Y. Zhu, B. Jiang, H. Jin, M. Zhang, F. Gao, J. Huang, T. Lin, X. Wang, Networked
time-series prediction with incomplete data via generative adversarial network,
ACM Trans. Knowl. Discov. Data 18 (5) (2024) 115:1–115:25.

[5] Q. Ma, S. Li, G.W. Cottrell, Adversarial joint-learning recurrent neural network
for incomplete time series classification, IEEE Trans. Pattern Anal. Mach. Intell.
44 (4) (2022) 1765–1776.

[6] Y. Li, M. Du, W. Zhang, X. Jiang, Y. Dong, Feature weighting-based deep fuzzy
C-means for clustering incomplete time series, IEEE Trans. Fuzzy Syst. (2024).

[7] W. Alahamade, I. Lake, C.E. Reeves, B. de la Iglesia, A multi-variate time series
clustering approach based on intermediate fusion: A case study in air pollution
data imputation, Neurocomputing 490 (2022) 229–245.

[8] Q. Ma, C. Chen, S. Li, G.W. Cottrell, Learning representations for incomplete
time series clustering, in: Proceedings of the 35th AAAI Conference on Artificial
Intelligence, AAAI Press, 2021, pp. 8837–8846.

[9] J. Enes, R.R. Expósito, J.D. Fuentes, J.L. Cacheiro, J. Touriño, A pipeline
architecture for feature-based unsupervised clustering using multivariate time
series from HPC jobs, Inf. Fusion 93 (2023) 1–20.

[10] J. Wu, O. Wyman, Y. Tang, D. Pasini, W. Wang, Multi-view 3D reconstruction
based on deep learning: A survey and comparison of methods, Neurocomputing
582 (2024) 127553.
12 
[11] A. Kumar, J. Yadav, A review of feature set partitioning methods for multi-view
ensemble learning, Inf. Fusion 100 (2023) 101959.

[12] G. He, H. Wang, S. Liu, B. Zhang, CSMVC: A multiview method for multivariate
time-series clustering, IEEE Trans. Cybern. 52 (12) (2022) 13425–13437.

[13] N. Zhang, S. Sun, Multiview unsupervised shapelet learning for multivariate
time series clustering, IEEE Trans. Pattern Anal. Mach. Intell. 45 (4) (2023)
4981–4996.

[14] J. Xu, Y. Ren, H. Tang, Z. Yang, L. Pan, Y. Yang, X. Pu, P.S. Yu, L. He, Self-
supervised discriminative feature learning for deep multi-view clustering, IEEE
Trans. Knowl. Data Eng. 35 (7) (2023) 7470–7482.

[15] C. Cui, Y. Ren, J. Pu, J. Li, X. Pu, T. Wu, Y. Shi, L. He, A novel approach
for effective multi-view clustering with information-theoretic perspective, in:
Proceedings of the 37th Conference on Neural Information Processing Systems,
Vol. 36, 2023.

[16] X. Liu, M. Li, C. Tang, J. Xia, J. Xiong, L. Liu, M. Kloft, E. Zhu, Efficient and
effective regularized incomplete multi-view clustering, IEEE Trans. Pattern Anal.
Mach. Intell. 43 (8) (2021) 2634–2646.

[17] X. Han, F. Zhou, Z. Ren, X. Wang, X. You, View-specific anchors coupled tensorial
bipartite graph learning for incomplete multi-view clustering, Inform. Sci. 664
(2024) 120335.

[18] Z. Wang, L. Li, X. Ning, W. Tan, Y. Liu, H. Song, Incomplete multi-view clustering
via structure exploration and missing-view inference, Inf. Fusion 103 (2024)
102123.

[19] W. Xia, Q. Gao, Q. Wang, X. Gao, Tensor completion-based incomplete multiview
clustering, IEEE Trans. Cybern. 52 (12) (2022) 13635–13644.

[20] J. Yin, S. Sun, Incomplete multi-view clustering with reconstructed views, IEEE
Trans. Knowl. Data Eng. 35 (3) (2023) 2671–2682.

[21] X. Liu, X. Zhu, M. Li, L. Wang, E. Zhu, T. Liu, M. Kloft, D. Shen, J. Yin, W.
Gao, Multiple kernel k-means with incomplete kernels, IEEE Trans. Pattern Anal.
Mach. Intell. 42 (5) (2020) 1191–1204.

[22] J. Yin, S. Sun, Incomplete multi-view clustering with cosine similarity, Pattern
Recognit. 123 (2022) 108371.

[23] S. Deng, J. Wen, C. Liu, K. Yan, G. Xu, Y. Xu, Projective incomplete multi-view
clustering, IEEE Trans. Neural Netw. Learn. Syst. (2023).

[24] J. Wen, Z. Zhang, Z. Zhang, L. Zhu, L. Fei, B. Zhang, Y. Xu, Unified tensor
framework for incomplete multi-view clustering and missing-view inferring, in:
Proceedings of the 35th AAAI Conference on Artificial Intelligence, AAAI Press,
2021, pp. 10273–10281.

[25] Z. Lv, Q. Gao, X. Zhang, Q. Li, M. Yang, View-consistency learning for incomplete
multiview clustering, IEEE Trans. Image Process. 31 (2022) 4790–4802.

[26] Z. Li, C. Tang, X. Zheng, X. Liu, W. Zhang, E. Zhu, High-order correlation
preserved incomplete multi-view subspace clustering, IEEE Trans. Image Process.
31 (2022) 2067–2080.

[27] C. Liu, J. Wen, Z. Wu, X. Luo, C. Huang, Y. Xu, Information recovery-driven
deep incomplete multiview clustering network, IEEE Trans. Neural Netw. Learn.
Syst. (2023).

[28] H. Cai, W. Huang, S. Yang, S. Ding, Y. Zhang, B. Hu, F. Zhang, Y. Cheung,
Realize generative yet complete latent representation for incomplete multi-view
learning, IEEE Trans. Pattern Anal. Mach. Intell. 46 (5) (2024) 3637–3652.

[29] J. Pu, C. Cui, X. Chen, Y. Ren, X. Pu, Z. Hao, P.S. Yu, L. He, Adaptive feature
imputation with latent graph for deep incomplete multi-view clustering, in:
M.J. Wooldridge, J.G. Dy, S. Natarajan (Eds.), Proceedings of the 38th AAAI
Conference on Artificial Intelligence, AAAI Press, 2024, pp. 14633–14641.

[30] G. Xu, J. Wen, C. Liu, B. Hu, Y. Liu, L. Fei, W. Wang, Deep variational
incomplete multi-view clustering: Exploring shared clustering structures, in:
M.J. Wooldridge, J.G. Dy, S. Natarajan (Eds.), Proceedings of the 38th AAAI
Conference on Artificial Intelligence, AAAI Press, 2024, pp. 16147–16155.

[31] K. Maninis, S. Popov, M. Nießner, V. Ferrari, Vid2CAD: CAD model alignment
using multi-view constraints from videos, IEEE Trans. Pattern Anal. Mach. Intell.
45 (1) (2023) 1320–1327.

http://refhub.elsevier.com/S1566-2535(24)00590-6/sb1
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb1
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb1
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb1
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb1
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb2
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb2
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb2
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb2
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb2
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb3
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb3
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb3
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb3
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb3
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb4
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb4
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb4
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb4
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb4
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb5
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb5
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb5
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb5
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb5
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb6
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb6
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb6
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb7
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb7
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb7
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb7
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb7
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb8
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb8
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb8
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb8
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb8
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb9
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb9
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb9
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb9
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb9
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb10
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb10
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb10
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb10
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb10
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb11
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb11
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb11
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb12
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb12
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb12
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb13
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb13
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb13
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb13
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb13
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb14
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb14
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb14
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb14
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb14
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb15
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb15
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb15
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb15
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb15
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb15
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb15
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb16
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb16
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb16
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb16
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb16
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb17
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb17
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb17
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb17
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb17
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb18
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb18
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb18
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb18
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb18
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb19
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb19
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb19
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb20
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb20
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb20
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb21
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb21
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb21
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb21
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb21
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb22
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb22
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb22
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb23
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb23
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb23
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb24
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb24
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb24
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb24
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb24
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb24
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb24
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb25
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb25
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb25
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb26
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb26
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb26
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb26
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb26
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb27
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb27
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb27
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb27
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb27
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb28
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb28
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb28
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb28
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb28
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb29
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb29
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb29
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb29
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb29
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb29
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb29
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb30
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb30
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb30
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb30
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb30
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb30
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb30
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb31
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb31
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb31
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb31
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb31


Y. Li et al. Information Fusion 117 (2025) 102812 
[32] L. Peng, Y. Yang, Z. Wang, Z. Huang, H.T. Shen, MRA-Net: Improving VQA via
multi-modal relation attention network, IEEE Trans. Pattern Anal. Mach. Intell.
44 (1) (2022) 318–329.

[33] J. Xu, Y. Ren, G. Li, L. Pan, C. Zhu, Z. Xu, Deep embedded multi-view clustering
with collaborative training, Inform. Sci. 573 (2021) 279–290.

[34] Q. Wang, Z. Ding, Z. Tao, Q. Gao, Y. Fu, Generative partial multi-view clustering
with adaptive fusion and cycle consistency, IEEE Trans. Image Process. 30 (2021)
1771–1783.

[35] N. Liang, Z. Yang, Z. Li, W. Han, Incomplete multi-view clustering with
incomplete graph-regularized orthogonal non-negative matrix factorization, Appl.
Intell. 52 (13) (2022) 14607–14623.

[36] X. Liu, P. Song, Incomplete multi-view clustering via virtual-label guided matrix
factorization, Expert Syst. Appl. 210 (2022) 118408.

[37] J. Xu, C. Li, L. Peng, Y. Ren, X. Shi, H.T. Shen, X. Zhu, Adaptive feature
projection with distribution alignment for deep incomplete multi-view clustering,
IEEE Trans. Image Process. 32 (2023) 1354–1366.

[38] M. Shang, C. Liang, J. Luo, H. Zhang, Incomplete multi-view clustering by
simultaneously learning robust representations and optimal graph structures,
Inform. Sci. 640 (2023) 119038.

[39] T. Brüsch, M.N. Schmidt, T.S. Alstrøm, Multi-view self-supervised learning for
multivariate variable-channel time series, in: D. Comminiello, M. Scarpiniti
(Eds.), Proceedings of the 33rd IEEE International Workshop on Machine
Learning for Signal Processing, IEEE, 2023, pp. 1–6.

[40] Y. Ren, J. Pu, Z. Yang, J. Xu, G. Li, X. Pu, S.Y. Philip, L. He, Deep clustering:
A comprehensive survey, IEEE Trans. Neural Netw. Learn. Syst. (2024).

[41] Y. Lin, Y. Gou, Z. Liu, B. Li, J. Lv, X. Peng, COMPLETER: incomplete multi-
view clustering via contrastive prediction, in: Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition, 2021, pp. 11174–11183.

[42] W. Peng, Z. Zhang, W. Dai, X. Fu, L. Liu, L. Liu, N. Yu, A multi-view comparative
learning method for spatial transcriptomics data clustering, in: Proceedings of the
10th IEEE International Conference on Bioinformatics and Biomedicine, 2023, pp.
287–292.

[43] Z. Huang, H. Chen, Z. Wen, C. Zhang, H. Li, B. Wang, C. Chen, Model-
aware contrastive learning: Towards escaping the dilemmas, in: Proceedings of
the 40th International Conference on Machine Learning, Vol. 202, 2023, pp.
13774–13790.

[44] C. Niu, H. Shan, G. Wang, SPICE: semantic pseudo-labeling for image clustering,
IEEE Trans. Image Process. 31 (2022) 7264–7278.

[45] W.V. Gansbeke, S. Vandenhende, S. Georgoulis, M. Proesmans, L.V. Gool, SCAN:
learning to classify images without labels, in: Proceedings of the 16th European
Conference, in: Lecture Notes in Computer Science, vol. 12355, 2020, pp.
268–285.

[46] Y. Li, P. Hu, J.Z. Liu, D. Peng, J.T. Zhou, X. Peng, Contrastive clustering, in:
Proceedings of the 35th AAAI Conference on Artificial Intelligence, AAAI Press,
2021, pp. 8547–8555.

[47] J.M. Giorgi, O. Nitski, B. Wang, G.D. Bader, DeCLUTR: Deep contrastive
learning for unsupervised textual representations, in: C. Zong, F. Xia, W. Li,
R. Navigli (Eds.), Proceedings of the 11th International Joint Conference on
Natural Language Processing, Association for Computational Linguistics, 2021,
pp. 879–895.

[48] S. Wu, Y. Zheng, Y. Ren, J. He, X. Pu, S. Huang, Z. Hao, L. He, Self-weighted
contrastive fusion for deep multi-view clustering, IEEE Trans. Multimed. 26
(2024) 9150–9162.

[49] H. Chen, Y. Wang, B. Lagadec, A. Dantcheva, F. Brémond, Joint generative and
contrastive learning for unsupervised person re-identification, in: Proceedings
of IEEE Conference on Computer Vision and Pattern Recognition, 2021, pp.
2004–2013.

[50] Y. Tian, D. Krishnan, P. Isola, Contrastive multiview coding, in: A. Vedaldi, H.
Bischof, T. Brox, J. Frahm (Eds.), Proceedings of the 16th European Conference
on Computer Vision, Vol. 12356, Springer, 2020, pp. 776–794.

[51] K. Hassani, A.H.K. Ahmadi, Contrastive multi-view representation learning on
graphs, in: Proceedings of the 37th International Conference on Machine
Learning, Vol. 119, PMLR, 2020, pp. 4116–4126.
13 
[52] R. Lin, Y. Lin, Z. Lin, S. Du, S. Wang, CCR-Net: Consistent contrastive
representation network for multi-view clustering, Inform. Sci. 637 (2023)
118937.

[53] Y. Lu, Q. Li, X. Zhang, Q. Gao, Deep contrastive representation learning for
multi-modal clustering, Neurocomputing 581 (2024) 127523.

[54] J. Jin, S. Wang, Z. Dong, X. Liu, E. Zhu, Deep incomplete multi-view clustering
with cross-view partial sample and prototype alignment, in: Proceedings of
IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2023,
pp. 11600–11609.

[55] Y. Ren, X. Chen, J. Xu, J. Pu, Y. Huang, X. Pu, C. Zhu, X. Zhu, Z. Hao, L. He,
A novel federated multi-view clustering method for unaligned and incomplete
data fusion, Inf. Fusion 108 (2024) 102357.

[56] Y. Ren, J. Pu, C. Cui, Y. Zheng, X. Chen, X. Pu, L. He, Dynamic weighted graph
fusion for deep multi-view clustering, in: Proceedings of the 33rd International
Joint Conference on Artificial Intelligence, ijcai.org, 2024, pp. 4842–4850.

[57] Y. Wang, D. Chang, Z. Fu, J. Wen, Y. Zhao, Graph contrastive partial multi-view
clustering, IEEE Trans. Multimed. 25 (2023) 6551–6562.

[58] Z. Shu, B. Li, C. Mao, S. Gao, Z. Yu, Structure-guided feature and cluster
contrastive learning for multi-view clustering, Neurocomputing 582 (2024)
127555.

[59] B. Peng, G. Lin, J. Lei, T. Qin, X. Cao, N. Ling, Contrastive multi-view learning
for 3D shape clustering, IEEE Trans. Multimed. 26 (2024) 6262–6272.

[60] Y.H. Tsai, Y. Wu, R. Salakhutdinov, L. Morency, Self-supervised learning from a
multi-view perspective, in: Proceedings of the 9th International Conference on
Learning Representations, OpenReview.net, 2021.

[61] H. Wang, Q. Wang, Q. Miao, X. Ma, Joint learning of data recovering and
graph contrastive denoising for incomplete multi-view clustering, Inf. Fusion 104
(2024) 102155.

[62] W. Lv, C. Zhang, H. Li, X. Jia, C. Chen, Joint projection learning and tensor
decomposition based incomplete multi-view clustering, 2023, arXiv preprint
arXiv:2310.04038.

[63] C. Zhang, H. Li, C. Chen, X. Jia, C. Chen, Low-rank tensor regularized views
recovery for incomplete multiview clustering, IEEE Trans. Neural Netw. Learn.
Syst. 35 (7) (2024) 9312–9324.

[64] J. Wen, Z. Wu, Z. Zhang, L. Fei, B. Zhang, Y. Xu, Structural deep incomplete
multi-view clustering network, in: G. Demartini, G. Zuccon, J.S. Culpepper, Z.
Huang, H. Tong (Eds.), Proceedings of the 30th ACM International Conference
on Information and Knowledge Management, ACM, 2021, pp. 3538–3542.

[65] J. Xu, C. Li, Y. Ren, L. Peng, Y. Mo, X. Shi, X. Zhu, Deep incomplete multi-view
clustering via mining cluster complementarity, in: Proceedings of the 36t AAAI
Conference on Artificial Intelligence, AAAI Press, 2022, pp. 8761–8769.

[66] J. Gui, Z. Sun, Y. Wen, D. Tao, J. Ye, A review on generative adversarial
networks: Algorithms, theory, and applications, IEEE Trans. Knowl. Data Eng.
35 (4) (2023) 3313–3332.

[67] Y. Lin, Y. Gou, X. Liu, J. Bai, J. Lv, X. Peng, Dual contrastive prediction for
incomplete multi-view representation learning, IEEE Trans. Pattern Anal. Mach.
Intell. 45 (4) (2023) 4447–4461.

[68] G. Chao, Y. Jiang, D. Chu, Incomplete contrastive multi-view clustering with
high-confidence guiding, in: Proceedings of the 38th AAAI Conference on
Artificial Intelligence, Vol. 38, 2024, pp. 11221–11229.

[69] W. Xia, Q. Wang, Q. Gao, X. Zhang, X. Gao, Self-supervised graph convolutional
network for multi-view clustering, IEEE Trans. Multimed. 24 (2021) 3182–3192.

[70] J. Xu, H. Tang, Y. Ren, L. Peng, X. Zhu, L. He, Multi-level feature learning
for contrastive multi-view clustering, in: Proceedings of the 32nd Conference on
Computer Vision and Pattern Recognition, 2022, pp. 16030–16039.

[71] Y. Zhang, Q. Huang, B. Zhang, S. He, T. Dan, H. Peng, H. Cai, Deep multiview
clustering via iteratively self-supervised universal and specific space learning,
IEEE Trans. Cybern. 52 (11) (2022) 11734–11746.

[72] J. de Jong, M.A. Emon, P. Wu, R. Karki, M. Sood, P. Godard, A. Ahmad,
H. Vrooman, M. Hofmann-Apitius, H. Fröhlich, Deep learning for clustering of
multivariate clinical patient trajectories with missing values, GigaScience 8 (11)
(2019) giz134.

http://refhub.elsevier.com/S1566-2535(24)00590-6/sb32
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb32
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb32
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb32
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb32
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb33
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb33
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb33
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb34
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb34
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb34
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb34
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb34
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb35
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb35
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb35
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb35
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb35
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb36
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb36
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb36
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb37
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb37
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb37
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb37
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb37
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb38
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb38
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb38
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb38
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb38
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb39
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb39
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb39
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb39
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb39
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb39
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb39
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb40
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb40
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb40
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb41
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb41
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb41
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb41
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb41
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb42
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb42
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb42
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb42
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb42
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb42
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb42
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb43
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb43
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb43
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb43
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb43
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb43
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb43
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb44
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb44
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb44
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb45
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb45
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb45
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb45
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb45
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb45
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb45
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb46
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb46
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb46
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb46
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb46
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb47
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb47
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb47
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb47
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb47
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb47
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb47
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb47
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb47
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb48
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb48
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb48
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb48
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb48
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb49
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb49
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb49
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb49
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb49
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb49
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb49
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb50
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb50
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb50
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb50
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb50
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb51
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb51
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb51
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb51
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb51
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb52
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb52
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb52
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb52
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb52
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb53
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb53
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb53
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb54
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb54
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb54
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb54
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb54
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb54
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb54
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb55
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb55
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb55
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb55
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb55
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb56
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb56
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb56
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb56
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb56
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb57
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb57
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb57
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb58
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb58
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb58
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb58
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb58
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb59
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb59
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb59
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb60
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb60
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb60
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb60
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb60
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb61
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb61
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb61
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb61
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb61
http://arxiv.org/abs/2310.04038
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb63
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb63
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb63
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb63
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb63
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb64
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb64
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb64
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb64
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb64
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb64
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb64
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb65
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb65
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb65
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb65
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb65
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb66
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb66
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb66
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb66
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb66
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb67
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb67
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb67
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb67
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb67
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb68
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb68
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb68
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb68
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb68
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb69
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb69
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb69
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb70
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb70
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb70
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb70
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb70
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb71
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb71
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb71
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb71
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb71
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb72
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb72
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb72
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb72
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb72
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb72
http://refhub.elsevier.com/S1566-2535(24)00590-6/sb72

	Contrastive learning-based multi-view clustering for incomplete multivariate time series
	Introduction
	Related Work
	Contrastive learning
	Multi-view clustering

	Method
	Motivation
	Overview of model
	Objective functions
	Optimization

	Results
	Experimental settings
	Experimental results and analysis
	Robustness analysis
	Representation visualization
	Ablation studies
	Parameter analysis
	Convergence analysis

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References


